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Cost Curve for CO, Capture and Storage in the US
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Cost Curve for CO, Capture and Storage in the US

How can we incentivize CO, capture through development of a CO,
utilization eco-system?




Emerging Approach: Reactive Capture of CO,

Reactive Capture Definition: The coupled process of capturing CO, from a mixed gas
stream and converting it into a valuable product without going through a purified CO,

intermediate

Can Include:

* Integration of CO, separation and
conversion in one step

* Integration of separation and
conversion in one unit

e Process intensification

Product Targets:

Must form a valuable product, or
mixture of products, in a more
reduced state than CO,

Greenhouse
Gas Mitigation

Renewables
Energy efficiency
Electrification

® Carbon Utilization (CU):
Conversion of CO, to
useful product(s)

Flue Gas (02
to Fuels and

i Reactive Capture (RC):

CO, capture and conversion
to a valuable product or
materials without purified
CO, as an intermediate

Biogenic C0z
to Fuels and
Chemicals

Enhanced
0il Recovery
A Carbon Capture (CC):
Separation of CO, from a
mixed gas stream to a purity
necessary for underground
storage or further utilization

Flue Gas
Capture and
torage

i

Mineralization

Direct Air
Capture and
torage

Negative
Emissions

Negative Emissions:
Removal of CO, from
the atmosphere

Summary Report of the Reactive CO2 Capture: Process Integration for the New Carbon
Economy Workshop, February 18-19, 2020 (https://www.nrel.gov/docs/fy210sti/78466.pdf)



Why Reactive Capture?
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Reactive Capture Technology Categories

' (Bi)Carbonate —KHCO3/K2CO3
Pathwa
Y lonic Liquids [BMIM][BF:]

[BMIM][PFs]
Meolten Carbonate
Molten Chloride

Ni-Based
Ru and Rh-Based

LLLLEC Amine-Based
sysie Amidine-Based
Alkali Hydroxide-Based

Bifunctional sorbent-

e e ok : catalyst
Methanogens Methanogenic archaea

Biological C. ljungdahlii

Pathway | Acctogens  puiStei—_
i Chlorellasp.

Algae/Microalgae Scaredesrmiss 5.
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Electrochemical Pathway Overview

Primary Products: CO,
Syngas, Formate, and
Solid Carbon (High-T)
TRL:2-3

Current densities up to
200 mA/cm? have been

demonstrated under
some conditions

Limited demonstration
of DAC integration

Small electrode surface
areas (<10cm?) and

limited durability testing

Low-T (bi)carbonates
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L(mr-temperatureC 2H CO3 -

€O, Capture C
2C0 + 2H,

20H™

Ag/Hg/Pd, KHCO, / NaHCO,, RT

Low-T lonic Liquids
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Low-temperature A/ 4 H:. 2H,0
CO; Capture C L
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2 \~/ :
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Low-T Amines
4e‘| 4e~

2C0, Cath eC?H node

RNHCO,” NH;*R

Low-temperature
CO, Capture C
2C0 + 2H,0

4RNH,
Ag/Cu/Bi/Pb, MEA/EDA, RT — 60°C

High-T Molten Salts

4e |y de”
co, Cathode node
g heat
High-temperatur —CQZZ__., 4_//
CO, Capture C 202~
~  C+H,0
0% +————2— 0,

Ni/Fe/Ti, Li,CO,, 500 - 900°C
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Thermochemical Pathway Overview

° / .
Primary Products: |_Reactants |_Reaction _ | End-product
Methane, Syngas, ol Functio L
. . ual Fu n oy — 320C, 1 bar P
Methanol, Formic Acid, Materials {DFM} - MO +(Ru + Ce0;) e
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1 H system co, —_— 50C, 5 bar —
* DAC integration NbCly+NBu,Br
demonstrated for one-pot Armidine based " _, B .
Synthesis ) Biphosphene
o . H
* Often evaluated in batch Hydroddebased  co,oa0)  —s e T -
Y glycol I+ Ru-PNP

mode with a limited 7 R ..
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Biological Pathway Overview

*  Primary Products: Methane,

CO, conversion|Selectivity | Productivity | T (°C); co,
(%) (%) (g/L/day) | P(atm) | Source

o ) ) Acetogen
productivity when considering Acetate ~100% 90% 148 30;1 Pure CO,

low CO, concentrations NREL | 9

Ethanol, Acetate, Microalgae - — —_— 0682 || 261 | AIFCO,
° TRL: 2-9 (Off_gases’ power- 71% 100% 0.040 25;1  AirCO,
to-gas) 45% 100% 0.024 25;1  Airco,
. . Scenedesmus n.a. 100% 0.009 30;1 Air CO,

* Diverse product slate Microalgae < obliguus
accessible through metabolic na. Lt RS RS

. . obliquus
engineering 24% 100% 0.203 30;1 Flue gas
«  Mild temperature and R R R R
1 | Methane | 99% 100% 568.9  62.5;8.4 Biogas

ressure 9 0 .

: ;4. i
P m 85% 100% 97.5 65;4.9 Pure CO
. Methanogens and Acetogens Methanogen - m 60% 100% 364.8 65;4.9 Pure CO,
are anaerobic microbes, thus | Methane  RER 100% SLEN SRt (Riiee:
. . . 65% 100% 53.5  65;0.74 Pure CO
DAC integration is challenging g Vethere et
m 95% 95% 195 37;1 MSW gas
° Mass transport limits 95% 5% 14 37,1 MSW gas




Overarching Challenges and Needs

* Integrating with real process streams

* Transitioning from batch to continuous processing —
matching capture and conversion rates

* Understanding and mitigating impacts of impurities
* Quantifying capture media stability, attrition, and
cycleability 0
* Identifying figures of merit
— Energy efficiency
— Productivity-normalized capex

Areal or Volumetric
Productivity

Decreasing CO, concentration  wger | 10



CO,-to-Intermediates




Technoeconomic Analysis (TEA) Methodology

Process Model Equipment Sizing/Costing

Minimum Selling

and Raw Ms\terial Price (MSP)
Feedstock Composition Accounting
Operating Conditions ‘s | Flow rates ' X = [ Cost $
Conversion Yields i 1
i
Approach. Product Yield kg or MMBTU

* Design conceptual process including all major steps
Calculate minimum selling price (MSP) using discounted cash-flow analysis (2016S)
Evaluate 3 scenarios with major assumptions and technical metrics based on:

o Future: Attalnable process improvements or engmeerlngjudgements ey ~5.CO (EC)

[$0.03/kWh; $20/mt CO, cost] I(r
o Theoretical: Thermodynamic limitations [$0.02/kWh; SO/mt CO, cost] 5.
Perform inclusive sensitivity analysis to identify:

o Key cost drivers [P v— \l;

________________

o R&D needs to realize cost reductions Cell Voltage (v) FE (%)

Scale basis: CO, stream generated from a 200M gallon per year ethanol biorefinery M I 2



Uncertainty and Interpretation

MSPs are cost estimates. They are not direct
indicators or metrics for market relevance or
commercial readiness.




— <
T -~
= 'G 00—
58 L
E Some
r.r4N
O '3 ©
. = O
g m
od o
nyl
agl
S o«
I o«
. < O
N W N

1es

9]
o+
o
-
O
O
-
(ol
O
-
(qv)
9]
>
)
=
-
Fi)
)
(ol
O
Q
o+
o
£
()]
(g

Calculated MSP values for products across 5 different (direct and indirect)

CO, reduction technolog

2]
(%]
=r
(%]
S0
S <
QL =
o &
Yo
—
S5 4
2 0
S
U w
o —
g ©
v Q
+ 9
£ 8
T =
..n.\.w
e w
T =

©
2
S
9]
<

Q
Q2
@
O
@

LTE: Low-temperature electrolysis

©
S
€
(]
<
(8]
o
IS
—
(]
<
T
O
T



Viability of Near-term Products

Economics are challenging under current conditions, but 8 of 11

products can reach market parity in future scenario
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SlS/GJ 157 g Z. Huang, R. Grim, et
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Technology and Market Impacts

Opportunities exist for significant cost reduction through both favorable
market conditions and technological advancements

LTE (-87%) HTE (-77%) BC (-55%) TC (-54%)
o
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Opportunities for Transformational R&D

Economic analysis can help identify specific areas for transformational R&D
Impact of Current Density for PEM Electrolyzer
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s ; of reduced CO, : Methane
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c 40 i
©
S 1
v i
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0 : I
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gy & Environ. Sci.,
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Impact of CO, Cost

CO, source plays a critical role in overall economic viability

* Energy efficient
processes utilizing the
fewest electrons exhibit
the highest relative
impact of CO, cost on
MSP

* Increasing the CO, price
from S20/tonne
(baseline) to $63/tonne
(NGCC) increases MSP
on average about 15%

Z. Huang, R. Grim, et al.,
Energy & Environ. Sci.,
2021, 14, 3664-3678.
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Interactive Visualization Website

(OR. nrelgov 10N BY Qs

Economic Feasibility for CO. Utilization Data wey
Visualization Tool Bt N R E L

Home Conversion Pathways v Glossary Contact Us

i feasibility and key cost drivers of producing chemical intermediates from i -Eﬁo..v

NREL offers insight into the eco
carbon dioxide (CO;) and electr

cross five different conversion pathways
Y LFPCIENCY &

These data visualizations are a companion to The Economic Outioak for Corverting CO, and Electzons 1o Molecules, Energy & ENCRG
FRENEWARBLE ENERGY

Ermironmental Sclence (2021)

Thermochamical conversion

Blological conversion

—
ml ow-temperature electrolysis

Developed with funding from the Bioenergy Technologies Office, Office of Energy Efficiancy and Renewable Energy, U.S. Department of Energy.

https://www.nrel.gov/bioenergy/co2-utilization-economics/ NREL | 19
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Cost of Intermediate Upgrading

Methanol to High-Octane Gasoline

*1-9-1-'
Catalysis ’L
.'
.)> > .}> . Q ﬁ‘n";h

Biomass Syngas Methanol — glilia
g -y -

Estimated Cost:
S0.4 - S0.6/GGE
S3-S5/GJ

D. Ruddy, et al., Nature Catalysis, 2019, 2, 632-640.

Ethanol to SAF

Estimated Cost:
S0.9-51.2/GGE
S7 -S9/GJ

L. Tao, et al., Green Chemistry, 2017, 19, 1082-1101.
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Summary

* Reactive capture is still relatively early stage, but a multitude of
technology options exist

— Integration is essential combined with durability testing to prove out
performance metrics

— Rigorous TEA, LCA, systems analysis, and risk assessment can help
guide development

* DAC-to-SAF can achieve significant carbon intensity reductions relative to
petroleum jet fuel when leveraging low-C electricity

* Beyond electricity price, capex utilization and overall energy efficiency
play a critical role in economic viability

* How do we design technologies to drive down energy intensity while
maximizing productivity?

NREL | 21
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